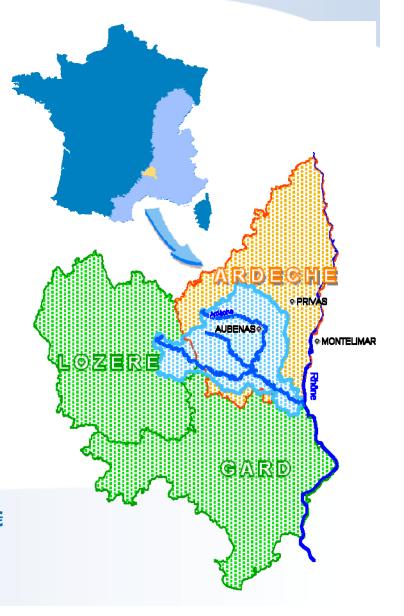


SAGE et étude volumes prélevables : Le cas du bassin versant de l'Ardèche

Journée technique ARRA

Mesures de réduction des prélèvements


5 avril 2013 - Alixan (26)

Périmètre du SAGE : le bassin versant de l'Ardèche

- ✓ Superficie : 2 430 km²
- ✓ Principaux cours d'eau et sous bassins :
 - Ardèche
 - Beaume
 - Chassezac
- ✓ Masses d'eau :
 - 58 masses d'eau superficielles
 - 7 masses d'eau souterraines
- ✓ Population permanente : 117 000 hab.
- ✓ Population en été : 280 000 hab.
- ✓ Coût annuel des services de l'eau : 52 M€

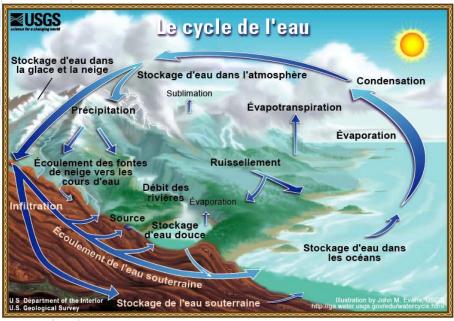
Un territoire de contrastes marqué par l'eau

Des extrêmes hydrologiques

- En crue elle double le débit du Rhône,
- A l'étiage, proche du débit d'une source...

Des milieux adaptés au contexte méditerranéen mais...

- Une forte pression sur la biodiversité
- Un bon état écologique non garanti partout

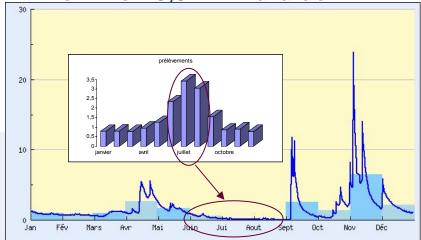


Des usages variés et historiques

- Afflux touristique en été
- Pression sur la ressource et pression foncière
- Sécheresse / inondation : deux risques omniprésents

Un bilan global à l'échelle du bassin versant rassurant...

3 milliards de m³ précipités / an

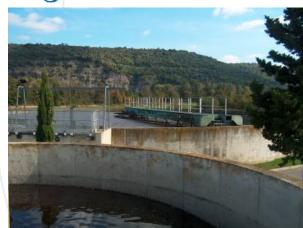

1,2 milliards de m³ évaporés / an

1,8 milliards de m³/an écoulés vers le Rhône

+0,2 milliards de m³/an prélevés sur la Loire

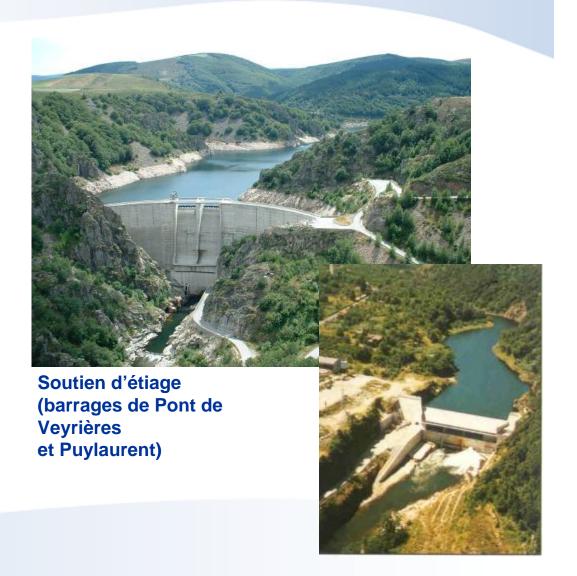
Prélèvements annuels sur le bassin

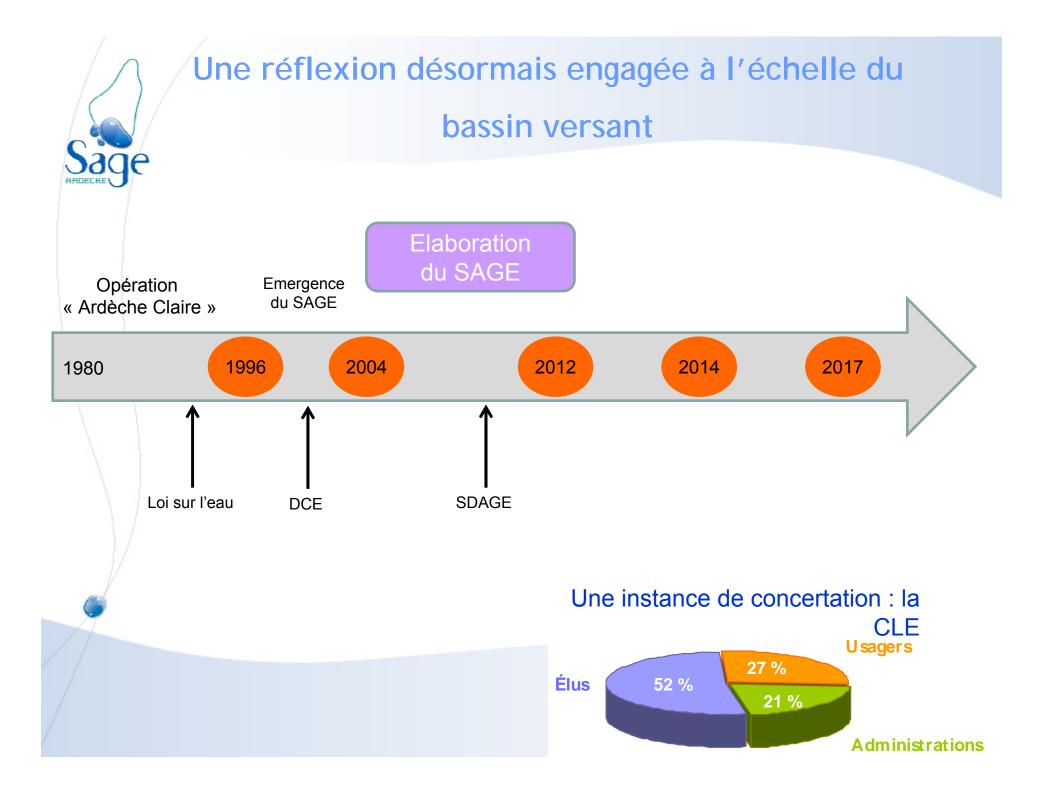
environ 0,02 milliard de m³



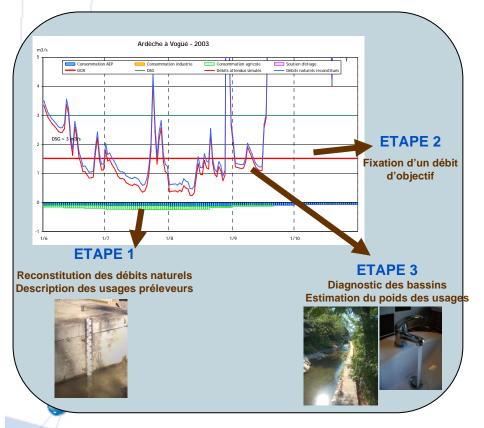
... mais une répartition inégale dans le temps

et des besoins les plus forts à la période la plus critique


Une première réponse apportée avec l'opération « Ardèche Claire »



Assainissement


Etude d'optimisation de l'eau par l'irrigation / Restauration de canaux / passage sous pression

Un Plan de Gestion des Etiages pour élaborer le volet quantité

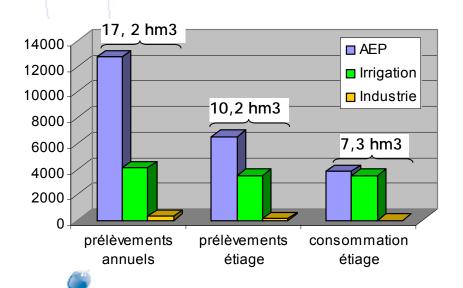
Proposition de débits objectifs :

- -DOE = VCN 30 pour cours d'eau non soutenus
- -Nouveau débits objectif/période de soutien pour axes soutenus

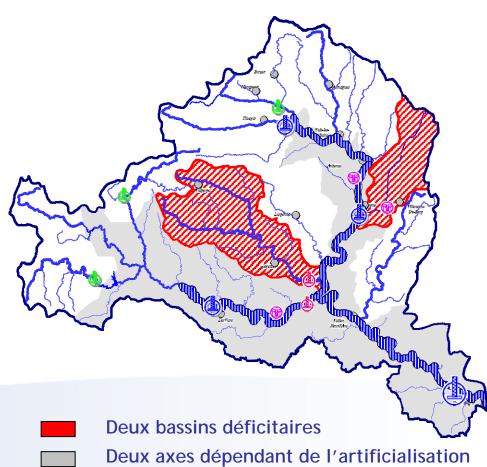
Estimation des déficits :

-analyse statistique des fréquences et intensité

Analyse prospective:


- évolutions des besoins AEP (+11%, +25%, +40%)
- scénario climatique

Proposition de stratégies territorialisées



Les éléments du diagnostic

Vers un rééquilibrage des consommations à l'étiage

Une grande diversité des situations dans l'équilibre ressource / besoin

Vers le choix d'un scénario à partir d'une approche socio-économique

Scénario de référence : respect des DOE avec probabilité 4/5 Proposition de mesures

Définition des ressources manquantes en volume pour des occurrences 1/5

et 1/10

Scénario PGE garantie année sèche 1/5	Scénario PGE garantie année sèche 1/10
---------------------------------------	--

	Déficit avant	Déficit après	Déficit avant	Déficit après
Sous bassin	soutien d'étiage	soutien étiage	soutien d'étiage	soutien étiage
Beaume	160 000	160 000	260 000	260 000
Ardèche amont Vogüé	7 730 000	0	13 080 000	1 870 000
Chassezac	6 240 000	0	7 350 000	0
Ardèche exutoire	12 890 000	4 440 000	22 260 000	8 350 000

Analyse socio-économique

3 questions:

Quelles articulation des mesures pour résorber les déficits ?

Faut-il augmenter le niveau de sécurisation des usages, c'est-à-dire aller au-delà du scénario de référence ?

Quels en seraient les coûts et les bénéfices/bénéficiaires potentiels ?

Vers le choix d'un scénario

Quelle articulation des mesures pour résorber les déficits ?

Volumes de déséquilibre résorbés (réduction prélèvement + nouvelles ressources)

Sécurisation quinquennale

Sous-bassin	Beaume	Ardèche amont Vogué	Chassezac à exutoire	Ardèche de Vogue à St Martin	Global bassin
Réduction consommation ménages	8	78	29	33	3%
Réductions fuites AEP	16	146	55	63	6%
Réduction consommations agricoles	6	53	134	40	5%
Substitution ressources eau potable	79	0	\ 55	189	7%
Création de nouveaux stocks	52	0	\ 0	3 404	78%
Total	160	277	273	3 729	4 440

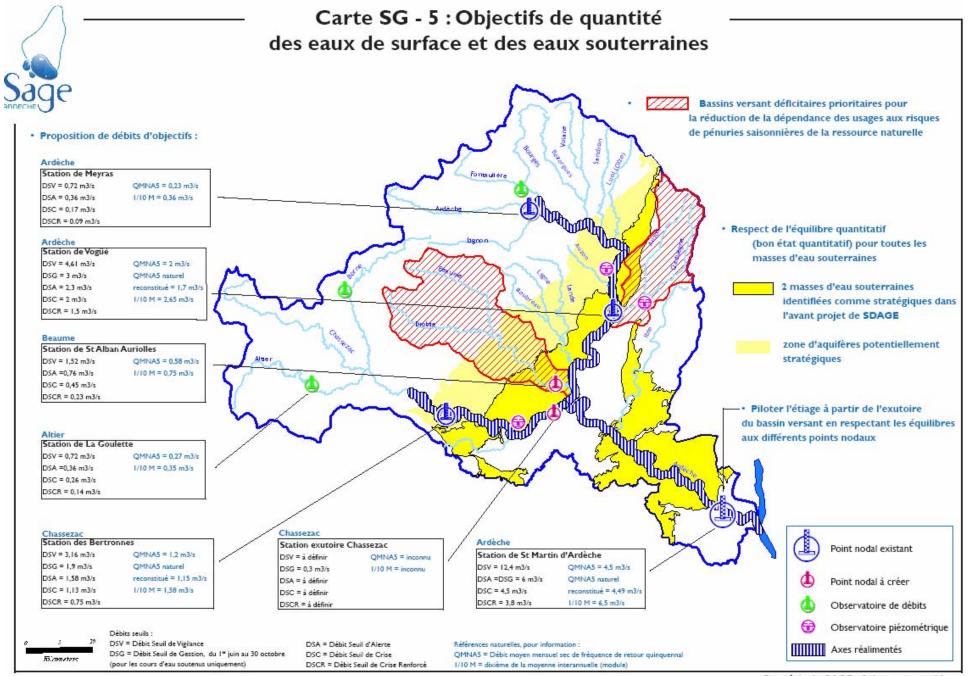
Sécurisation décennale

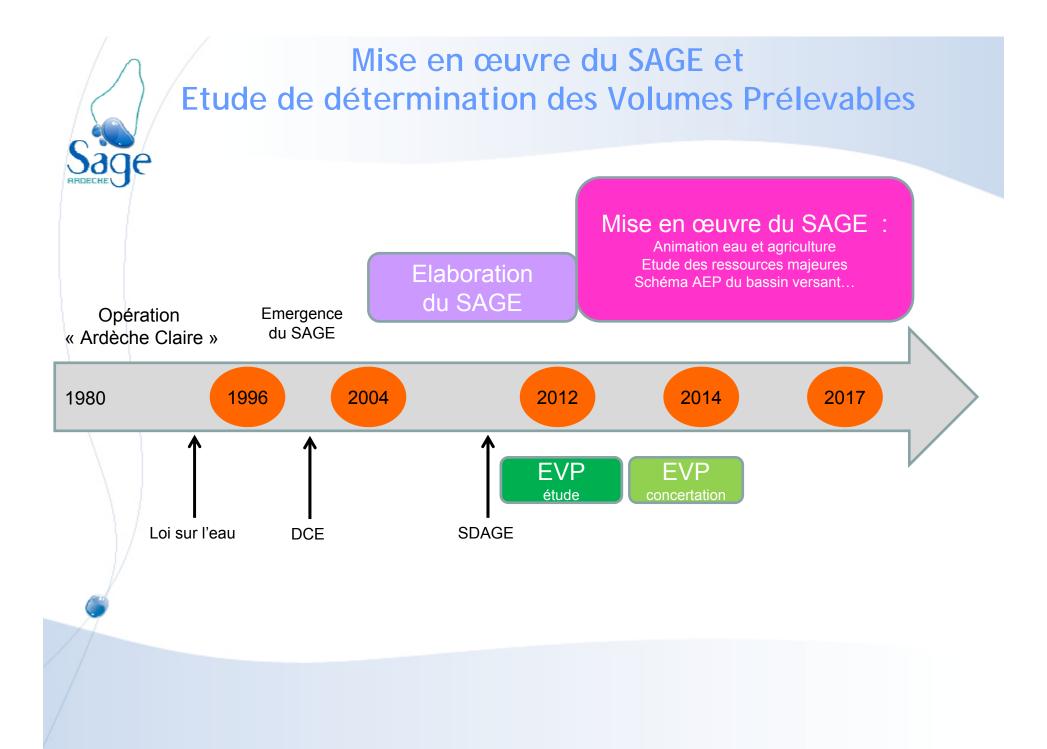
Sous-bassin	Beaume	Ardèche amont Vogué	Ch	assezac à exutoire	Ardèche de Vogue à St Martin	Global bassin
Réduction consommation ménages	17	78		29	33	2%
Réductions fuites AEP	31	146		55	63	4%
Réduction consommations agricoles	12	53	×	134	40	3%
Substitution ressources eau potable	157	0		55	189	5%
Création de nouveaux stocks	43	1 593		0	5 652	87%
Total	260	1 870		273	5 977	8 380

La traduction dans le SAGE approuvé

Au niveau du PAGD : 13 dispositions selon 3 grands principes d'actions

1. Renforcer la gestion collective

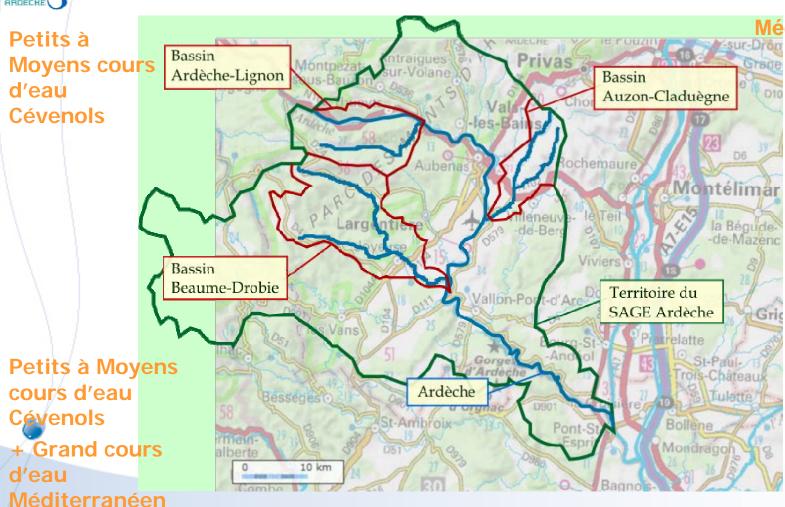

- ▶ cadre unique pour la gestion des étiages
- ▶ définir des mesures de polices adaptés aux objectifs du SAGE
- ▶ expertise de bassin versant et pilotage de l'étiage
- 2. Réduire la dépendance des usages aux risques de pénuries saisonnières de la ressource naturelle en priorité sur les bassins déficitaires
 - pgestion plus économe (réduire le gaspillage, les fuites, ...)
 - ▶ stratégies agronomiques (esquive, tolérance, ...)
 - efforts d'assainissement
 - ▶ aménagements nautiques adaptés à l'étiage


3. Optimiser l'existant et agir sur la ressource

- ▶ soutien d'étiage (optimisation de l'existant ou nouveau projet)
- > substitution de ressource
- ▶ sécuriser l'Alimentation en Eau Potable

+ principe de prise en compte de la ressource disponible dans les documents d'urbanisme et l'instruction réglementaire des projets

Au niveau du règlement : pas d'article (en attente EVP)



Sage

Etude Volume Prélevable :

Les bassins versants étudiés

Très Petits à Petits cours d'eau Méditerranéens

Résultats et conclusions sur les débits biologiques

Gains de SPU négligeables - marges de manœuvre extrêmement limitées

- Secteurs fortement contraints naturellement
- •DB déterminées supérieurs aux débits d'étiage naturels reconstitués
- •Des objectifs de débit trop élevés peuvent avoir des conséquences drastiques en terme de VP, alors que les prélèvements ne sont pas toujours les principaux responsables de la fragilité hydrologique du milieu vis-à-vis des peuplements.

DB = Indicateurs de contrainte plus que valeurs de débits à atteindre

- •Ne pas aggraver la situation actuelle par l'ajout de prélèvements supplémentaires.
- •Tout prélèvement existant ou à venir se doit/devra d'être abordé et analysé avec la plus grande précaution !

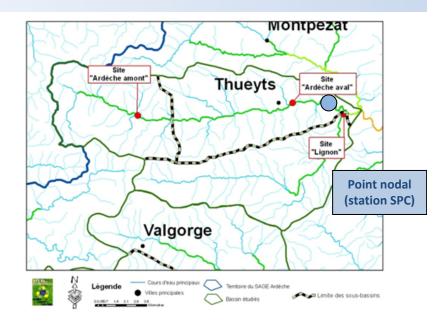
Résultats et conclusions par sous bassins

Bassin	Aı	dèche-Lignon		Beaume-Drobie		Auzon-Claduègne			
Sous-bassin	Ardèche Amont	Ardèche Aval	Lignon	Beaume Amont	Beaume Aval	Drobie	Auzon	Claduègne amont	Claduègne aval
Code site	ArdAmt	ArdAvl	Lig	BeaAmt	BeaAvl	Dro	Auz	ClaAmt	ClaAvl
			Débits mi	nimum biologiq	ues				
Débit critique (m3/s) - Lecture brute	0.120-0.180	0.350	0.200	0.200-0.300	0.700	0.160-0.260	0.020-0.035	0.035-0.055	0.035-0.050
Débit optimal (m3/s) - Lecture brute	0.500	1.100	0.700-0.800	0.750	2.000	0.750	0.090	0.130	0.130
			Indicateur	s des étiages natu	rels				
QMNA2 naturel (m3/s)	0.110	0.280	0.191	0.070	0.176	0.046	0.016	0.039	0.048
QMNA5 naturel (m3/s)	0.073	0.184	0.126	0.045	0.113	0.030	0.010	0.024	0.030
VCN30 1/5 naturel (m3/s)	0.060	0.153	0.104	0.038	0.096	0.025	0.008	0.020	0.025
VCN10 1/5 naturel (m3/s)	0.046	0.117	0.080	0.028	0.069	0.018	0.007	0.016	0.020

Milieu très fortement contraint par l'hydrologie naturelle

Milieu contraint par l'hydrologie naturelle, les assecs ou les conditions morphologiques

Milieu légèrement moins contraint

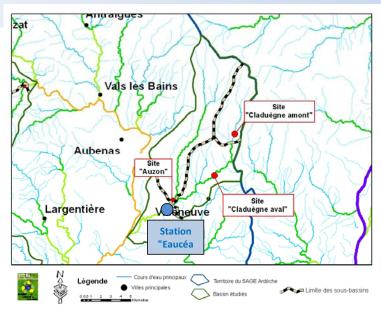

- Ardèche-Lignon
- ⇒ Prélèvements quasi-nuls => Gains espérés négligeables
- Beaume-Drobie
- ⇒ Très forte contraintes naturelles + Modèle en limite de validité (surestimation habitat ?)
- ⇒ Gains habitats espérés hors-prélèvements <15%</p>
- Auzon-Claduègne
- ⇒ Prélèvements à 100% sur 1 stockage en retenue agricole ou AEP
- ⇒ Gains habitats espérés hors-prélèvements <15%</p>

Résultats et conclusions par sous bassins : Ardèche Lignon

- Prélèvements très faibles, pour de la distribution publique (consommation < 10 l/s) + embouteillage d'eau
- Les gains de SPU sont négligeables (1%); il ne peut donc être recommandé pour ce bassin que de ne pas aggraver la situation actuelle par l'ajout de prélèvements supplémentaires

Volumes prélevables (milliers m³) bassin Ardèche - Lignon

USAGE	VP "été"	Variation /
93,92	, , ,	usage actuel
AEP	263	0%
Industrie	8	0%


♦ DCR = VCN10 quinquennal = 120 l/s

/

Résultats et conclusions par sous bassins : Auzon Claduègne

- ♦ AEP impactante mais prioritaire
- Marges de manœuvre sur l'amélioration des rendements (objectif 75% dans le SAGE) = 0,08 Mm³

Volumes prélevables (milliers m³) bassin Auzon - Claduègne						
Modélisations Usage VP "été" Variation / Usage actuel						
Yolumes stockés dans la retenue de Darbres (420 000 m²)	irrigation	0	0%			
Modélisation "usage actuel": i (+ rendement AEP à 75%) i	AEP	370	-10%	1%		
Modélisation "substitution : partielle" (à 50%)	AEP	207	-50%	8%		
Modélisation "substitution totale"	AEP	0	-1 0 0° i	17%		

Gains de SPU avec AEP supprimée

♦ ≈ 17% - non négligeable

Réduction des assecs (20-25 jours en moyenne)

♦ DOE = 10 l/s

⇔ DCR = 5 l/s

Résultats et conclusions par sous bassins : Beaume Drobie

- Prélèvements AEP importants, malgré les substitutions des dernières années
 : 0,84 Mm³ annuels
- ♦ Rendement actuel 69% (67% SEBA –
 82% Lablachère 98% Sablières –
 60% pour les autres)
- Marges de manœuvre globales sur l'amélioration des rendements (objectif 75% dans le SAGE) = 0,08 Mm³
- Irrigation: environ 70 ha (60% en gravitaire) pour une demande potentielle de 0,31 Mm³ + retenues 2000 m³

Hydrologie d'étiage très faible et très contraignante pour le milieu, avec espèce emblématique :

l'Apron du Rhône

- Marges d'économies avec passage sous pression : 0,11 Mm³
- **⇔ DOE** = 300 l/s
- ♦ DCR = 120 l/s (?)

Résultats et conclusions par sous bassins : Beaume Drobie

Proposition de volumes prélevables

Gains de SPU en fonction de modélisations de réduction des Prélèvements

- ♦ Substitution totale des usages+10% pour guilde "radier"+22% pour guilde "chenal"
- Substitution IRRI et économies AEP ⇒ +7% et +15%
- ♦ Substitution AEP totale⇒ +7% et +15%
- ⇔ Economies AEP et IRRI⇒ +3% et +6%

Volumes prélevables (milliers m³) bassin Beaume - Drobie						
Modélisations	Modélisations Usage VP "été" Variation / usage actuel					
Modélisation "usage actuel"	AEP	400	-11%	0,5% / 1%		
(+ rendement AEP à 75%)	Irrigation	310	0%	(radier/chenal)		
Modélisation "substitution	A EP	225	-50%	2,5% / 5%		
AEP partielle" (à 50%)	Irrigation	310	0%	(radier/chenal)		
Modélisation	A EP	0	-1 00%	4,5% / 9%		
"substitution AEP totale"	Irrigation	310	0%	(radier/chenal)		
Modélisation "économies d'eau" (rendement AEP à	AEP	400	-11%	3% / 6%		
75% + irrigation totalement en aspersion)	Irrigation	200	-35%	(radier/chenal)		
Modélisation "irrigation substituée +	A EP	400	-11%	7% / 15%		
rendement AEP à 75%"	Irrigation	0	-1 00%	(radier/chenal)		
Modélisation	AEP	0	-1 00%	10% / 22%		
"substitution totale"	Irrigation	0	-1 00%	(radier/chenal)		

La feuille de route de la CLE sur le volet quantité

Les priorités portent :

•A cout terme : sur l'irrigation

•À moyen terme : sur l'alimentation en eau potable

• A long terme : sur l'anticipation des effets du changement climatique

Vers la révision des autorisations de prélèvement :

- Définition en cours d'une méthodologie et d'un calendrier de travail
- •Avec une nécessité : intégrer les impacts socio-économiques

La feuille de route de la CLE sur le volet quantité

Usage Irrigation

- Accompagner le travail engagé avec les chambres d'agriculture
- Contribuer à l'élaboration d'un programme d'actions effectif pour moderniser les pratiques et l'irrigation, en priorité sur les canaux
- •Envisager l'élaboration d'un schéma de l'hydraulique agricole et la constitution d'un (d') organisme(s) unique(s)

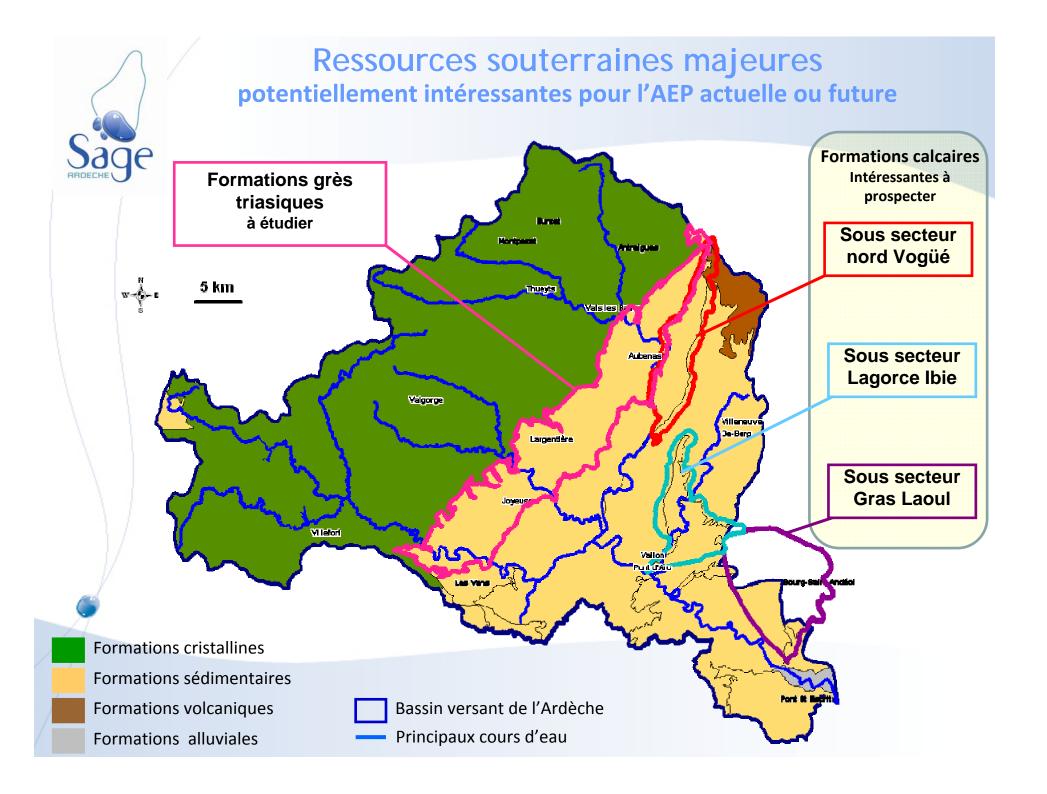
Zoom sur : le partenariat avec la chambre d'agriculture Ardèche

- ⇒Démarche d'inventaire des irrigants :
 - -base de données communes ChambAgri, DTT, SI rivières,
 - questionnaire « connaître les irrigants »
 - rencontre des irrigants par territoire
- ⇒ Etudes adéquation besoins ressources (lancées sur Beaume Drobie)
- ⇒Constitution d'un « GT irrigation »

La feuille de route de la CLE sur le volet quantité

Usage AEP

- •Elaborer un schéma AEP du bassin versant
- •Assurer le lien avec l'aménagement du territoire
- Engager des démarches sur les potentiels d'économie d'eau
- •Identifier, quantifier et protéger les ressources majeures


Usage Hydroélectrique

- •Mettre en œuvre les recommandations du SAGE pour le soutien d'étiage
- •Contribuer à la définition des débits réservés sur les complexes :
 - de Montpezat en lien avec la commission InterSAGE
 - du Chassezac en lien avec le comité coordonnateur interdépartemental du Chassezac

Suivi de la ressource

- Mettre en œuvre le tableau de la ressource
- Suivre l'expérimentation des débits objectifs :
 - Sur les cours d'eau soutenus : envisager une révision des règles de gestion et une répartition de la ressource stockée entre les différents usages
 - Sur les cours d'eau non soutenus : vers une révision des arrêtés cadres sécheresse sur la base des propositions de débits objectifs
- Initier des actions pour anticiper les effets du changement climatique

