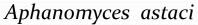
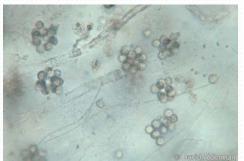
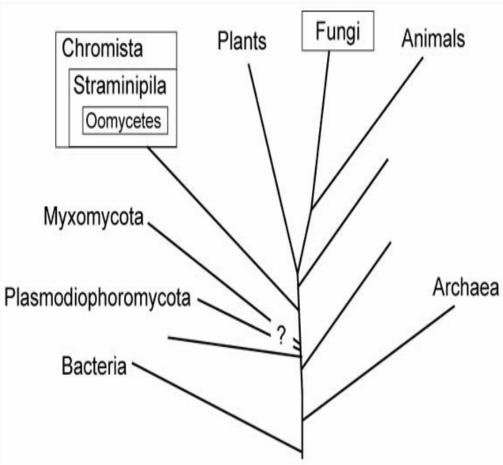
ETAT DES LIEUX DE LA RECHERCHE SUR LES ÉCREVISSES EN FRANCE

Frédéric Grandjean, Laboratoire Ecologie et Biologie des interactions UMR 7267, équipe Ecologie, Evolution, Symbiose Université de Poitiers

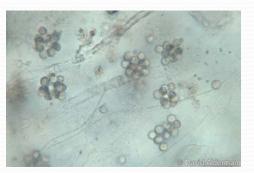




Sommaire

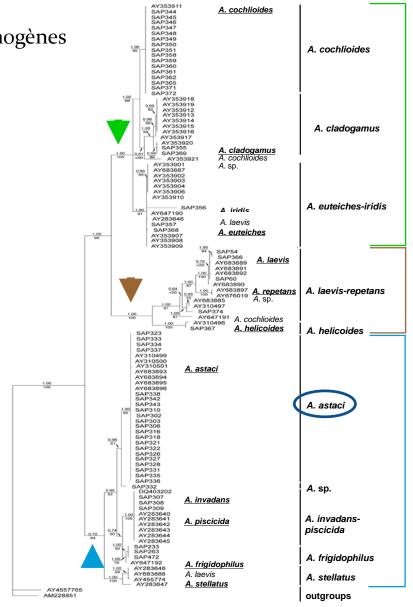

- Avancées scientifiques sur l'aphanomycose
- Autre pathologie : virus
- Détection écrevisses/peste par ADN env
- Bioindicateurs pour la sélection de site pour le repeuplement : les éphéméroptères

Quelques mots sur *Aphanomyces astaci*



Link *et al.* 2002

Position phylogénétique d' A. astaci

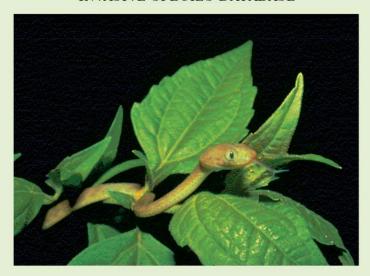

Classe des Oomycètes

En majorité, ce sont des pathogènes

- Aphanomyces astaci (Oomycètes)
- Origine : Amérique du Nord
- Hôte spécifique : écrevisses

plant parasitic lineage

saprotrophic/ opportunistic lineage


animal parasitic lineage

Dieguez-Uribeondo et al. 2009. Fungal Genetics and Biology

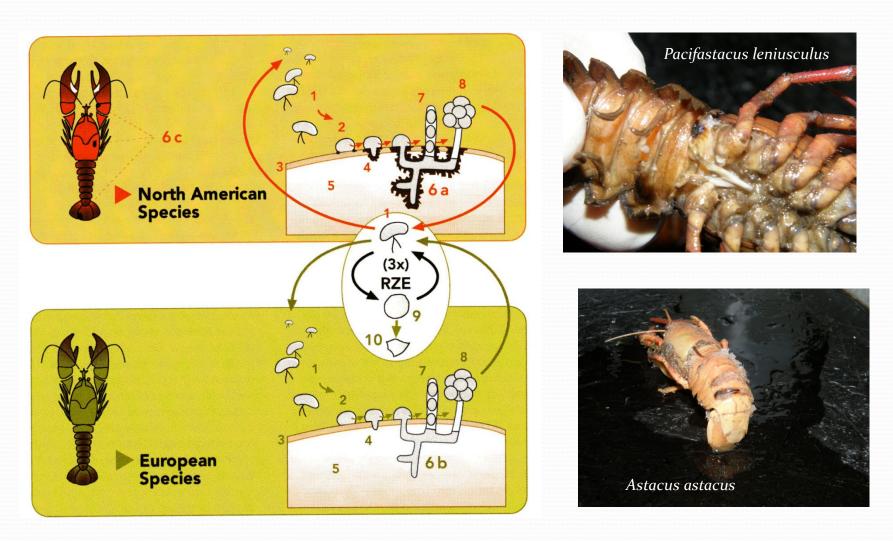
Aphanomyces astaci

100 OFTHEW ORLD'S **WORST INVASIVE ALIEN SPECIES**

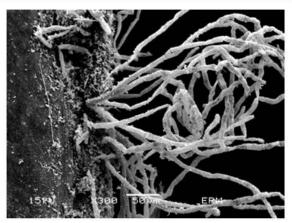
A SELECTION FROM THE GLOBAL INVASIVE SPECIES DATABASE

Contribution to the Global Invasive Species Programme (GISP)

In Association with

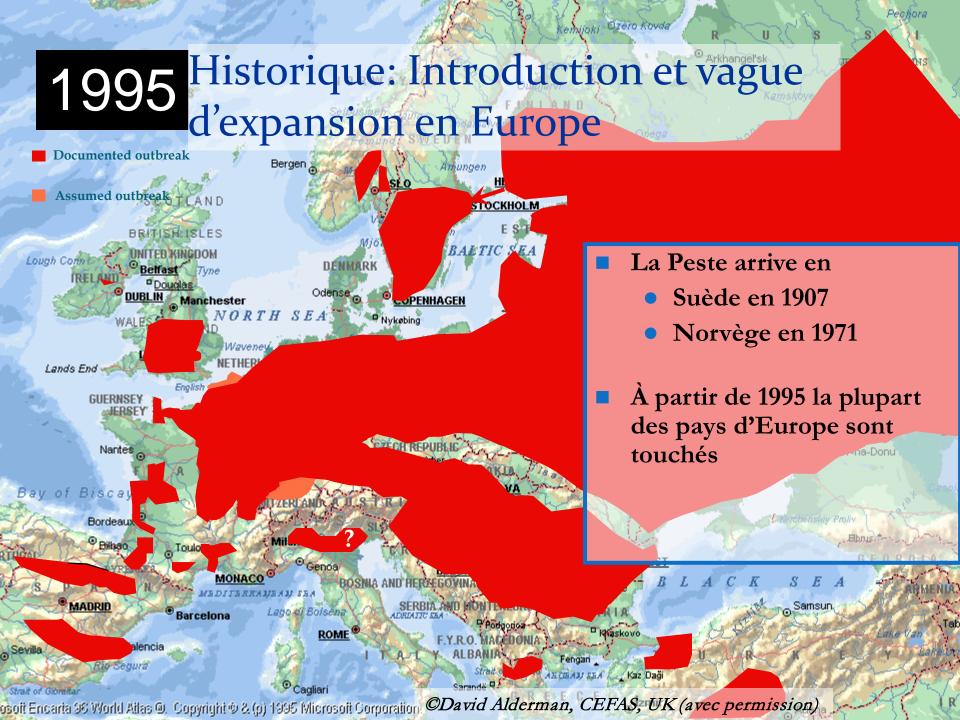


Profil d'infection d' A. astaci



Dieguez-Uribeondo et al . (2006) issu de l'Atlas of crayfish in Europe (Souty-Grosset et al. 2006).

Mortalité massive due à la peste


- Ne touche que les écrevisses; poissons ou autres animaux ne sont pas affectés
- Animaux morts, mourants et apparemment
 « normaux » peuvent être observés simultanément
- Mortalité s'étend vers l'amont
- Ecrevisses mourantes déambulent de jour

1895 Historique de la Peste: Introduction et vague d'expansion à travers l'Europe Mortalité massive observée Saint Petersburg Mortalité suspectée STOCKHOLM BALTIC SEA DUBLIN Manchester COPENHAGEN Mortalités massives reportée en Italie 10 ans plus tard même Lands End observations en France La peste s'étend alors Nantes e rapidement à travers l'Europe Bay of Biscay Bordeaux 4 Toulo ⊙ Genoa MADRID Lago di Boisena Barcelona Valencia osoft Encarta 96 World Atlas ම. Copyright ම & (p) 1995 Microsoft Corporation *©David Alderman, CEFAS, UK (avec permission)*

La vieille menace est de retour ...

Aquaculture

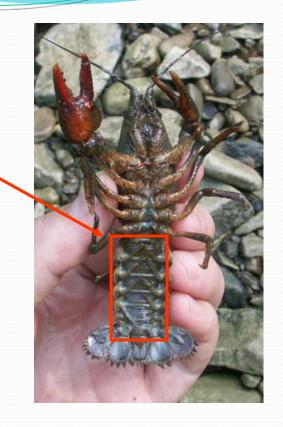
Aquaculture 274 (2008) 208-217

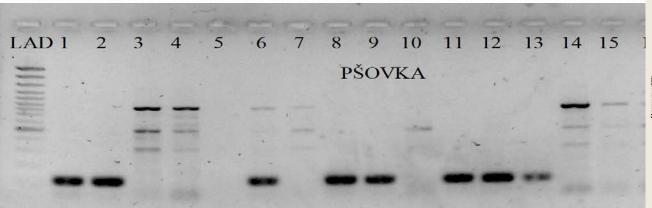
www.elsevier.com/locate/aqua-online

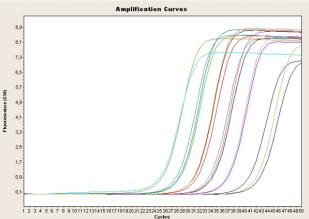

The old menace is back: Recent crayfish plague outbreaks in the Czech Republic

E. Kozubíková ^{a,*}, A. Petrusek ^{a,b}, Z. Ďuriš ^c, M.P. Martín ^d, J. Diéguez-Uribeondo ^d, B. Oidtmann ^e

- ^a Charles University in Prague, Faculty of Science, Department of Ecology, Viniciná 7, Prague 2, CZ-12844, Czech Republic
 ^b University of South Bohemia in České Budéjovice, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, Vodňany, CZ-38925, Czech Republic
 ^c University of Ostrowa, Department of Biology, Chitussish of IO, Ostrowa, CZ-71000, CRe Republic
 - d Real Jardin Botánico CSIC, Departamento de Micología, Plaza Murillo 2, 28014 Madrid, Spain

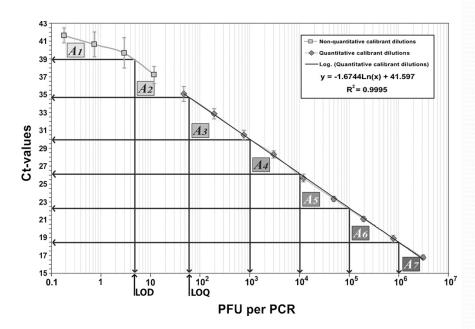

-10 Mortalités (2004-2011) +


- 8 pour *A. astacus*
- 2 pour *A. torrentium*



Détection d' A. astaci

- 1. Extraction d'ADN à partir d'un morceau de la cuticule abdominale ventrale
- 2. Amplification (PCR) de l'ADN du pathogene par utilisation d'amorce spécifique (ITS région nucléaire ribosomale) ou PCR quantitative

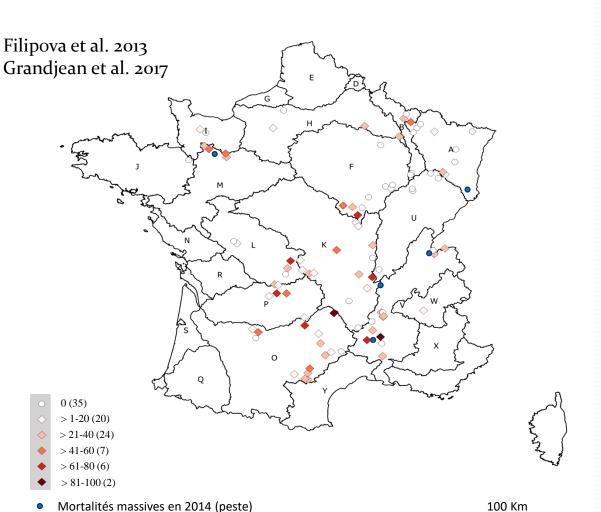


Détection d' A. astaci

Vol. 97: 113–125, 2011 DISEASES OF AQUATIC ORGANISMS doi: 10.3354/dao02411 DIS Aqual Org Published December 6

Re-examination of the prevalence of Aphanomyces astaci in North American crayfish populations in Central Europe by TaqMan MGB real-time PCR

Eva Kozubíková^{1,*}, Trude Vrålstad^{2,3}, Lenka Filipová^{1,4}, Adam Petrusek¹



Niveau d'infection	Signification
Ao	Négatif
A ₁	Traces d'A. astaci
A2	Très faible présence
A3	Faible présence
A4	Présence modérée
A5	Haut niveau de présence
A6	Très haut niveau de présence
A ₇	Niveau de présence exceptionnellement fort

Table 1 : Tableau récapitulatif des différents niveaux d'infection, (Vrålstad et al., 2009)

ONEMA Office national de l'eau et des milieux aquatiques

Taux d'infestation chez P. leniusculus en France

Echantillonnage:

- 89 populations
- 1030 individus

55 populations infestées sur 89 . (1030)

Niveaux d'infestation :

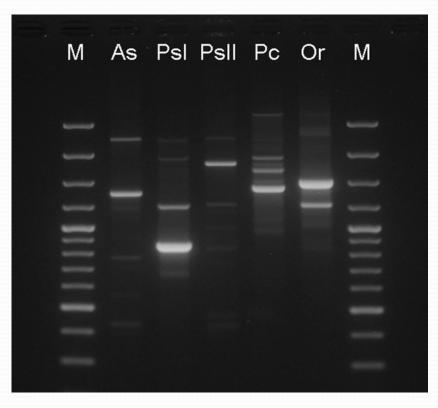
A1 134 individus A2 143 A3 54 A4 4 A5 3

Les taux d'infestation varient de 0 % à 100 %

Pas corrélation entre taux d'infestation et distance géographique

La peste des écrevisses

- Pacifastacus infectées par la peste

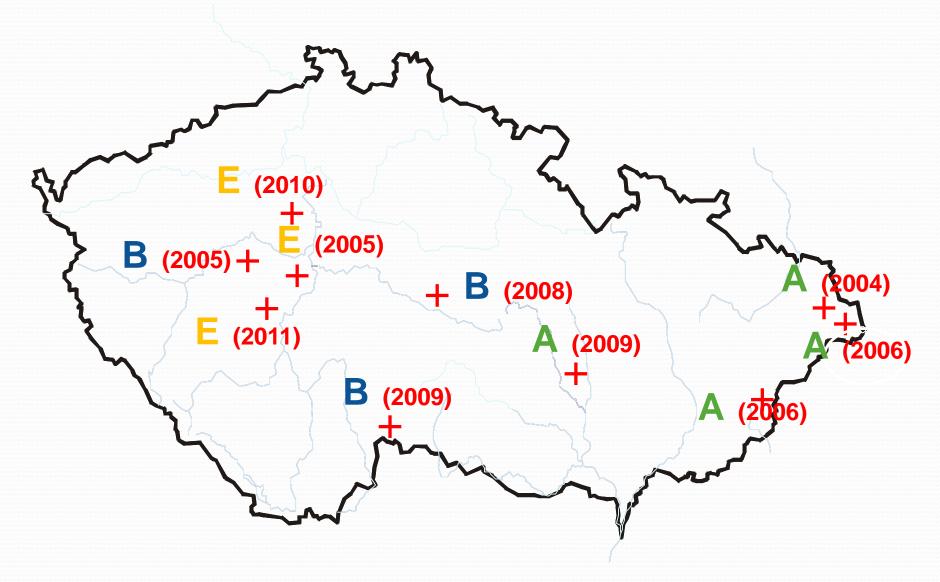


Aphanomyces astaci

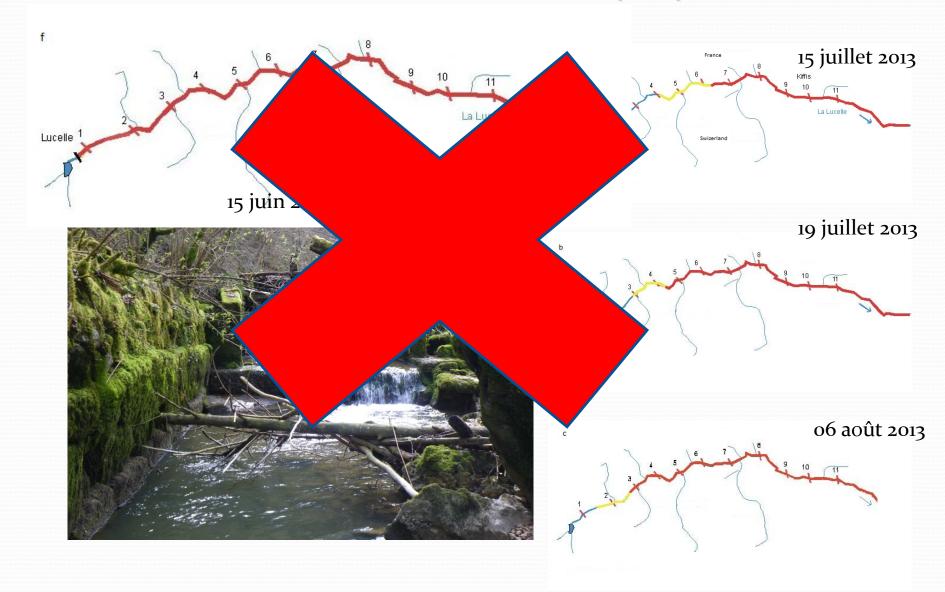
<u>5 groupes définis par RAPD</u>:

A (A. astacus, hôte de base inconnu,B et C (P.leniusculus),D (P. clarkii),E (O. limosus)

A B C D E


Profil RAPD pour les 5 souches décrites

Nouveau marqueur moléculaire : microsatellites


	Gro	up of A. asti	aci										
	A_1	A ₂	В	С	D	E	Outbreak	A. frigidophilus	A. repetans	Saprolegnia sp	S. parasitica	S. ferax	S. australis
	Evira6462/06	VI03557	VI03555	VI03558	VI03556	Evira4805	OUP1-4	=					
AT ₉	97	97	99/101	101	101	99	99/101	97/197	77/197	99/107	197	-	109
AT ₈	160	160	142	154	138	150	142/150	160/182	160	120/160	-	-	130/138
CA ₈	85	85	85	85	85	85	85	-	-	-	-	-	-
TA ₈	103	103	87	87	131	87/89	87	-	-	-	-	-	-
AT ₈	-	-	95	95	95	95	95	-	-	-	-	-	-
CGA ₈	157	157	148	148	148	148/157	148	-	-	-	-	-	-
TA ₈	207	207	215	191	203	207	205/215	113/167	-	139/175	139	-	-
GTC ₈	240	240	240	240	240	240	240	=	-	-		-	-
AT ₇	180	180	164/168	164/168	180	168/182	164		-	-	-	-	-
AT ₇	142	142	132	132	142	132 142	132/138	-	-	-	-	-	-
CA ₇	212	212	212/214	212/214	214	212/214	212/214	-	-	-	<u>-</u>	-	-
CA ₆	226/240	-	226/240	226	234	234/240	226	-	-	-	-	-	-
TG ₁₀	194	194	202	202	194	194/202	202	-	-	-	-	-	-
TG ₆	246	246	248	248	250	248	248	248	248	-	248	248	-

Combinaison de 9 microsatellites pour la discrimination des souches Grandjean et al. 2014

Epidémiologie des mortalités dues à la peste en Rép. Tchèque

Peste de l'écrevisse : La Lucelle (68) 2014

vers une résistance des populations natives?

Diseases of Aquatic Organisms

DAO 102:129-136 (2012) - doi:10.3354/dao02547

Differing virulence of Aphanomyces astaci isolates and elevated resistance of noble crayfish Astacus astacus against crayfish plague

J. Makkonen^{1,*}, J. Jussila¹, R. Kortet², A. Vainikka², H. Kokko¹

Vol. 103: 157–169, 2013 doi: 10.3354/dao02567 DISEASES OF AQUATIC ORGANISMS
Dis Aquat Org

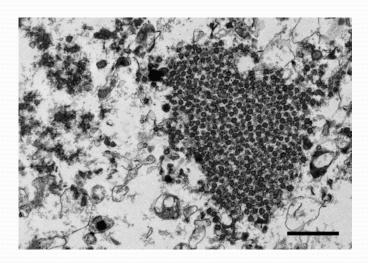
Published March 26

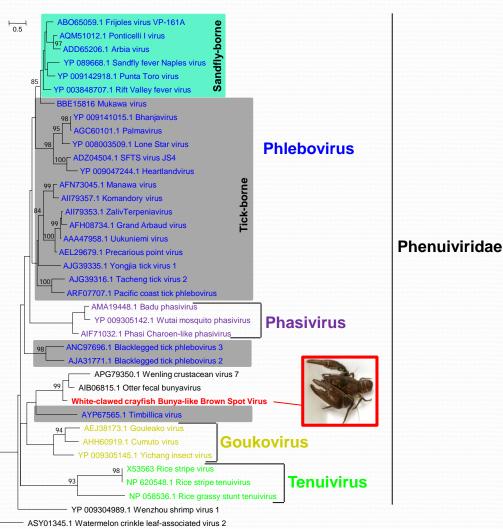
Aphanomyces astaci in wild crayfish populations in Slovenia: first report of persistent infection in a stone crayfish Austropotamobius torrentium population

Darja Kušar¹, Al Vrezec², Matjaž Ocepek¹, Vlasta Jenčič^{3,*}

¹Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1115 Ljubljana, Slovenia

²National Institute of Biology, 1000 Ljubljana, Slovenia

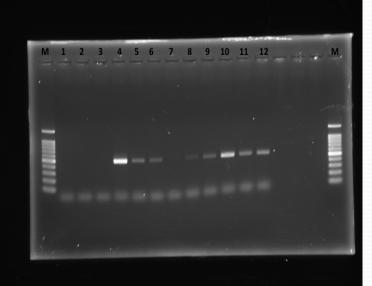

Department of Biology, University of Eastern Finland, 70211 Kuopio, Finland


²Department of Biology, University of Eastern Finland, 80101 Joensuu, Finland

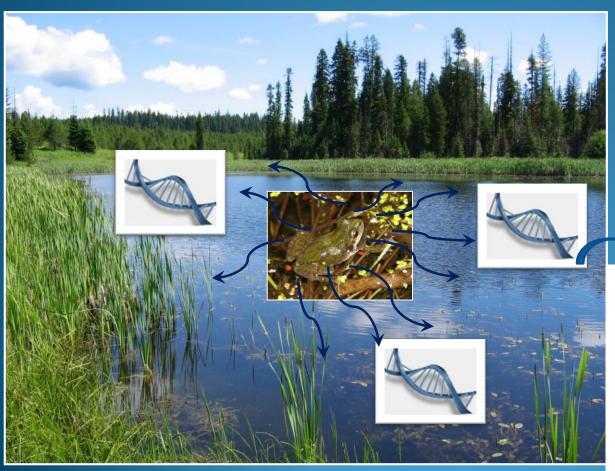
Nouvel agent pathogène : virus à ARN

Mortalité en 2017 sur la Bonneille (Doubs)

- -Symptômes identiques à la peste
- Tests aphanomycose négatifs

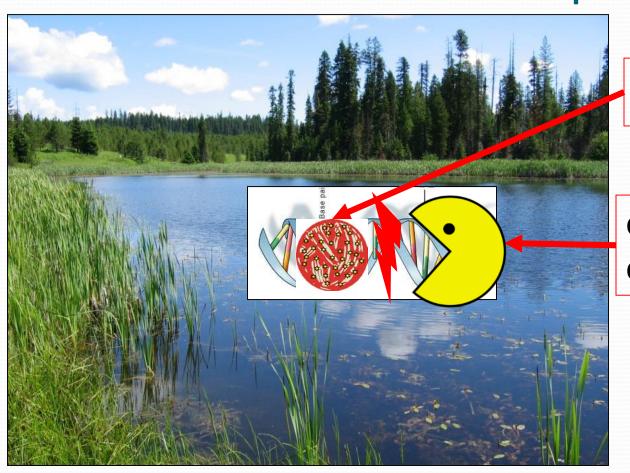


Nouvel agent pathogène : virus à ARN



Mise au point d'une méthode de détection par PCR

ADN environnement : nouvelle méthodologie d'inventaire et de monitoring


Définition

L'ADN environnemental (ADNe) est défini comme l'ADN pouvant être extrait à partir d'échantillons environnementaux, tels que l'eau, le sol ou les fèces, sans avoir besoin d'isoler au préalable des organismes cibles.

ADN dans l'environment aquatique

UV

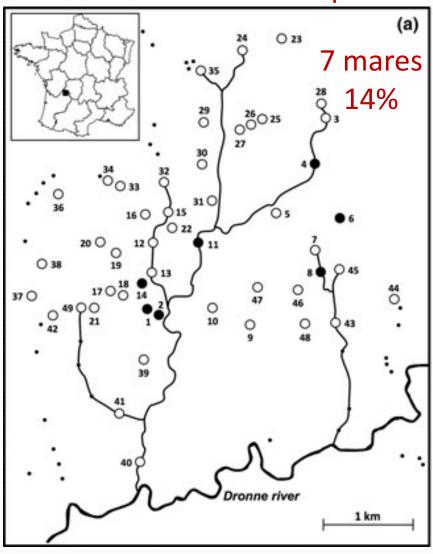
endonucleases/ exonucleases

Fragment d'ADN de 100 bp peut persister entre 2 - 3 semaines (Dejean et al. 2011)

Première publication

Biol. Lett. doi:10.1098/rsbl.2008.0118 Published online

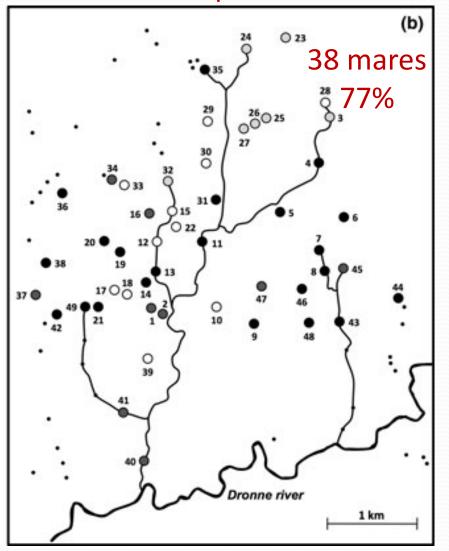
Population genetics


Species detection using environmental DNA from water samples

Gentile Francesco Ficetola^{1,2,*}, Claude Miaud², François Pompanon¹ and Pierre Taberlet¹

Grenouille taureau (Dejean et al. 2012)

Inventaire classique



Grenouille taureau (Dejean et al. 2012)

Inventaire classique

(a) O 23 7 mares ·Q35 14% (○ ○ 25 27 31 O O 38 1700 14 37 O

Détection par ADN env

ADNe dans les milieux aquatiques

- Poissons marins (Thomsen et al. 2012)
- Mammifères marins (Foote et al. 2012)
- Gastéropodes (Goldberg et al. 2013)
- Python (Piaggio et al. 2013)
- Truite (Wilcox et al. 2013)
- Saumon (Laramie 2013)
- Odonates et Chironomes (Doi et al. 2017)

Avantages de L'ADN env ou ADNe

- Inventaire non destructif (pas de capture, pas de dégradation d'habitat)
- Forte sensibilité plus forte probabilité de détection
- Détection Multi-espèces (+ pathogènes)
- Plus pratique, pas de transport d'appareil de capture
- Pas de demande de permission de capture

Journal of Applied Ecology 2014, 51, 871-879

ADNe pour la détection d'écrevisses

Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish *Procambarus clarkii* in freshwater ponds

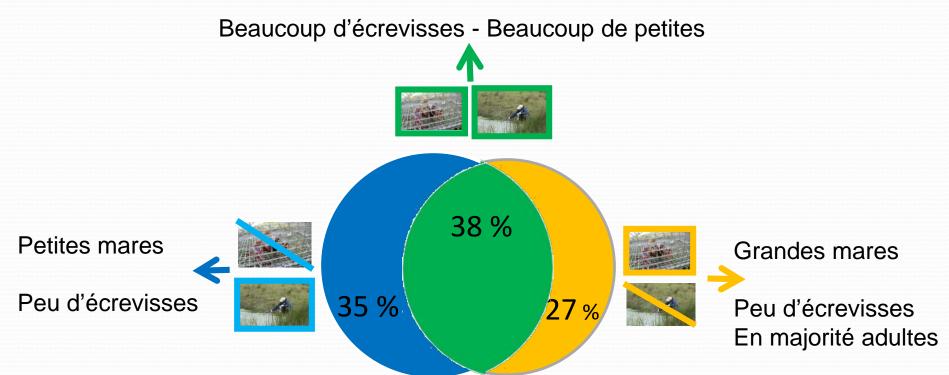
Anne Tréguier^{1,2,3}, Jean-Marc Paillisson³, Tony Dejean⁴, Alice Valentini⁴, Martin A. Schlaepfer^{1,2} and Jean-Marc Roussel^{1,2}

Etude : Comparaison de deux techniques d'échantillonnage de P.clarkii :

ADNe vs. Nasses

Méthodes d'échantillonnage

- ADNe = Détection de l'ADN d'une espèce à partir d'eau de la mare
 - 120m de périmètre maximum
 - Prélèvement de 20 x 40 mL
 - 6 sous-échantillons de 15 mL
 - 12 qPCR sur 1 des sous-échantillons



- 2. Nasses = Piégeage d'écrevisses
 - 24 h
 - Nombre de nasses : 1 pour 10 m de rive
 - CPUE (Catch Per Unit Effort)
 - 2 classes de taille

Détection par les 2 méthodes : réseau de 158 mares

Taux de détectabilité ADNe 59 %

-Conclusions

-Nasses & ADNe : complémentaires

-ADNe : Efficacité de détection supérieure

-Nasses: Estimations fiables de l'abondance

ADNe pour la détection d'écrevisses

Méthodologie non standardisée

			Taille			Nbre de	Vol. Eau	
Auteur	Espèces	Gene	produit	Q-PCR	Site	Site	échantillonné/site	Volume filtré
Treguier et al 2014	P. clarkii	COI	65	Sonde Taq man	Etang < 120 m	158	40 ml X 20	15ml
Mauvisseau et al 2016	P. leniusculus	COI	114	Taq man et SYBR green	Etangs 0.07 à 16 Ha	31	15 ml X 10	15 ml
	O. limosus	COI	78					
	P. clarkii	COI	73					
Dougherty et al 2016	O. rusticus	COI	128	Eva green	Lacs 61 à 338 ha	12	250 ml X 10	250 ml X 10
Ikeda et al 2017	C. japonicus	COI	124	Sonde Taq man	Cours d'eau, L < 2 m	21	1 L	1 L
Cai et al. 2017	P. clarkii	COI	65	Sonde Taq man	Etang	32	1L X 15	15 L
						14 dont		
Larson et al 2017	0.rusticus	COI	128	Eva green	Lacs et rivieres	5 lacs	250 ml X 10	250 ml X 10
	P. leniusculus	COI	184	Eva green	Lacs	11	250 ml X 10	
Agersnap et al 2017	A. astacus	COI	45 et 65	Sonde Taq man	Lacs, rivière	23	500 ml à 14 L	500ml à 14 L
	P. leniusculus	COI	45 et 65	Sonde Taq man				
	A.							
	leptodactylus	COI	45 et 65	Sonde Tag man				

Taux de Détection

Auteur	Espèces	Nbre de Site	Détection
Ikeda et al 2017	C. japonicus	21	100%
Treguier et al 2014	P. clarkii	158	59%
Cai et al. 2017	P. clarkii	32	68%
Dougherty et al 2016	O. rusticus	12	100%
		14 dont 5	
Larson et al 2017	0.rusticus	lacs	100%
	P. leniusculus	11	66%
Agersnap et al 2017	A. astacus	23	100%
	P. leniusculus		100%
	A. leptodactylus		100%
Mauvisseau et al 2016	P. leniusculus	31	100%
	O. limosus		100%
	P. clarkii		100%

Conclusions

- Plus les volumes d'eau prélevés sont importants, meilleure est la détection
- Plus les abondances d'écrevisses sont élevées, meilleure est la détection

Résultats préliminaires d'étude en cours en France

- Détection de l'écrevisse à pattes blanches, *Austropotamobius pallipes* en milieux lotique et stagnant (région nouvelle aquitaine)

Détection de l'écrevisse à pattes blanches en milieu lotique (2015)

 6 sites en milieu lotique (densité forte et faible), 3 périodes d'échantillonnage de Mai à Novembre : influence de la saison sur la détectabilité

Figure 1: Filtration d'eau pour l'analyse ADNe

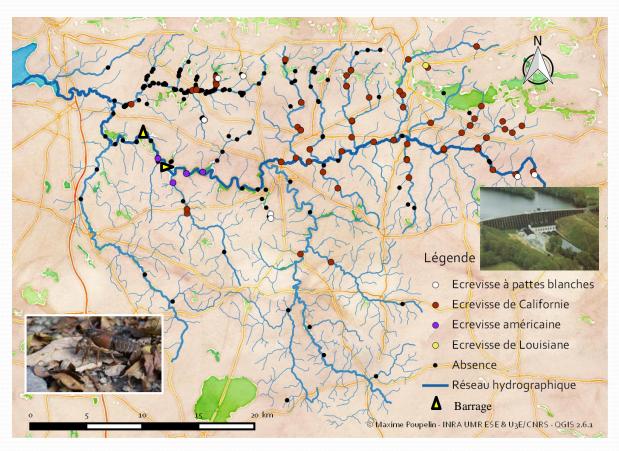
Tableau 1 : Nombre de réplicas positifs pour la détection de l'Ecrevisse à pattes blanches en Mai, Août et Novembre

Site - Prélèvement	Nombre de réplicas positifs en Mai	Nombre de réplicas positifs en Août	Nombre de réplicas positif en Novembre	Densité observée en 2013
Site A - 1	0/12	0/12	10/12	
Site A - 2	2/12	0/12	2/12	Forte
Site A - 3	4/12	0/12	6/12	
Site B - 1	0/12	3/12	7/12	
Site B - 2	0/12	1/12	3/12	Forte
Site B - 3	9/12	1/12	6/12	
Site C - 1	0/12	0/12	0/12	
Site C - 2	0/12	0/12	0/12	FoXe
Site C - 3	0/12	0/12	0/12	1
Site D - 1	0/12	0/12	1/12	
Site D - 2	1/12	0/12	0/12	Faible
Site D - 3	0/12	0/12	-	
Site E - 1	6/12	0/12	1/12	
Site E - 2	5/12	3/12	3/12	Faible
Site E - 3	2/12	1/12	1/12	
Site F - 1	0/12	0/12	0/12	
Site F - 2	0/12	0/12	1/12	Faible
Site F - 3	0/12	0/12	0/12	

Détection de l'écrevisse à pattes blanches en milieu stagnant (2016)

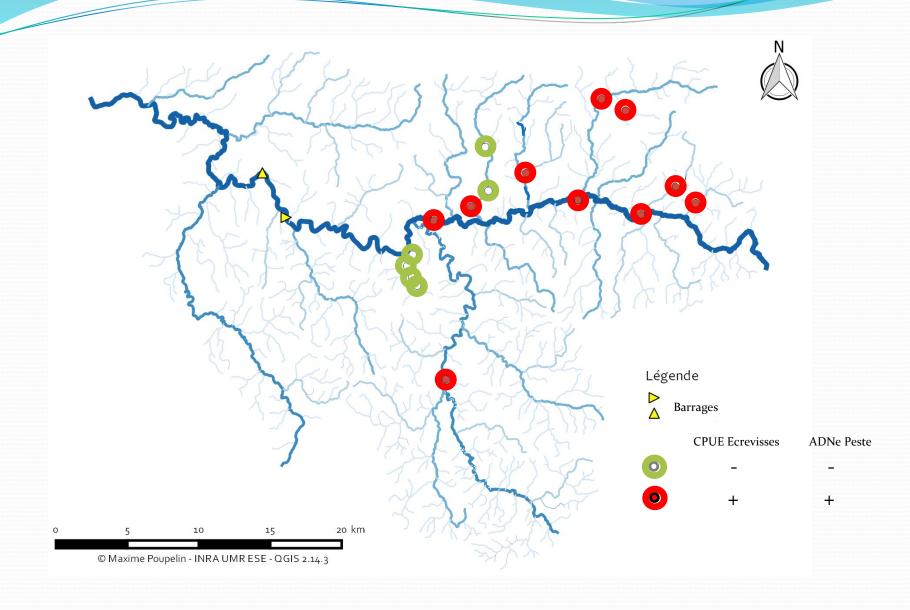
- 3 sites en milieu lotique, 6 sites en milieu stagnant

Tableau 1: Résultats de la détection de l'Ecrevisse à pattes blanches par l'ADN environnemental (approche spécifique) sur les 9 sites étudiés


Туре	Site	Prélèvement	Détection de l'ADN d'Ecrevisses à pattes blanches	Nombre de réplicats positifs
		1		1/12
	JUREN	2	OUI	3/12
		3		1/12
Milieux		1		7/12
courants	FONTR	2	OUI	7/12
		3		6/12
	NAVAR	1		0/12
		2	NON	0/12
		3		0/12
	E104	1	OUI	2/12
	E121	1	OUI	1/12
Milieux	E122	1	OUI	1/12
stagnants	E124	1	NON	0/12
	E129	1	NON	0/12
	E136	1	OUI	6/12

Présence d'inhibiteur ? Caractéristiques de l'eau ?

- Détection d'*Aphanomyces astaci* sur le bassin de la Sélune (Haute-Normandie)


Eric Petit et al, UMR ESE, INRA, Agrocampus Ouest, Rennes Jean-Marc Paillisson, UMR ECOBIO, CNRS, Université Rennes 1, Rennes Frédéric Grandjean, Carine Delaunay, UMR EBI, CNRS, Université de Poitiers

Analyses des taux d'infestation des populations de *Pacifastacus* et des prélèvements d'eau

Prélèvement d'eau (500 ml X4)

Conclusions

- Très bonne efficacité (peste) mais variable (écrevisse)
- Effet de la saison sur l'efficacité de la détection
- Effet de la distance du prélèvement par rapport à la station écrevisse sur l'efficacité de la détection
- Influence du volume prélevé sur la détection (notamment en milieu stagnant)
- Comment les paramètres environnementaux (physicochimie) influent sur la détectabilité
- Difficile de relier l'abondance estimée par capture/la quantité d'ADNe

Caractéristiques des habitats à écrevisses à pattes blanches

Objectif : déterminer des bio-indicateurs de la présence d'écrevisse à pattes blanches en vue de sélectionner des sites pour le repeuplement

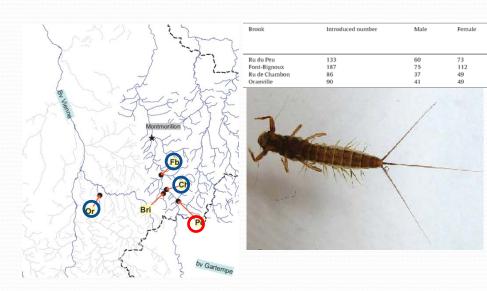
1. Caractéristiques des habitats à écrevisses à pattes blanches

Hydrobiologia
DOI 10.1007/s10750-011-0717-1

SHORT RESEARCH NOTE

Use of Ephemeroptera as bioindicators of the occurrence
of white-clawed crayfish (Austropotamobius pallipes)

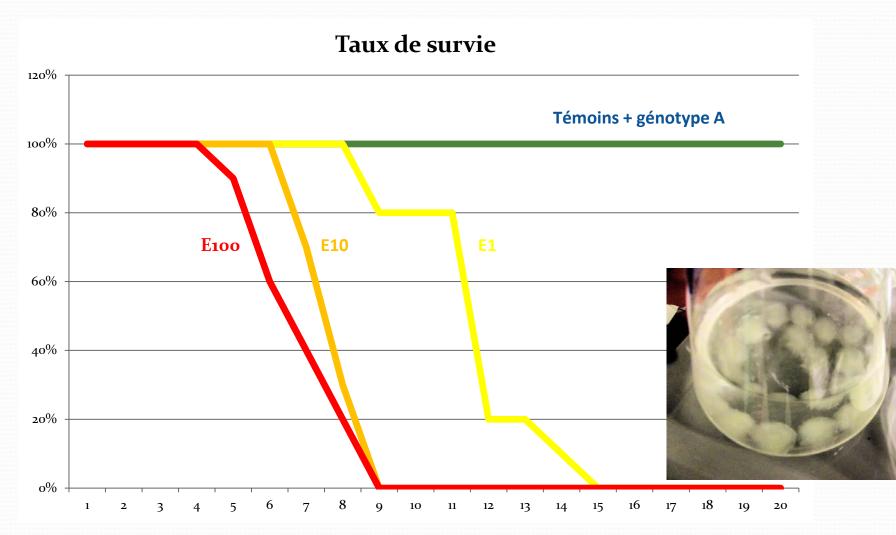
Frédéric Grandjean · Joelle Jandry · Elodie Bardon ·
Aurore Coignet · Marie-Cécile Trouilhé · Bernard Parinet ·
Catherine Souty-Grosset · Michel Brulin



- Richesse spécifique 4-8 espèces d'éphéméroptères
- Espèce(s) de la famille des Leptophlebiidae

Ephemeroptera communities as bioindicators of the suitability of headwater streams for restocking with white-clawed crayfish, *Austropotamobius pallipes*

Joelle Jandry^a, Michel Brulin^b, Bernard Parinet^a, Frédéric Grandjean^{c,*}


Préconisations

- Présence de Leptophlebiidae (cours d'eau l > 1m)
- Richesse en éphéméroptères de 4-8 espèces
- Vérifier l'absence de peste par ADN env
- Vérifier l'absence d'écrevisses exotiques par ADN env et nasses

Merci de votre attention

Evolution de la mortalité

Pour les groupes A et E

 Pas de mortalité observée après 60 jours pour la souche Al7 (A) (idem pour témoins négatifs)